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Ramirez and Kugler' recently reported the formation of a stable pentacovalent 1,3,2-dioxa- 

phospholen (1; A,B = OPh) from hexafluorobiacetyl (HFBA) and triphenyl phosphite at -70' in 

dichloromethane. We have independently obtained similar adducts from HFBA and a variety of 

trivalent phosphorus compounds and have studied their variable-temperature lgF n.m.r. spectra 

in order to gain more data on the relative apicophilicities of groups in pentacovalent 

phosphoranes.2 

The most stable conformer of an adduct in which A is more apicophilic than B is as shown 

in (1). The CFJ groups become equivalent by pseudorotation *the higher energy topomers (2) 

and (3). The free energy of activation for this process will be a function of the difference 

in apicophilicity between A and B, although as a kinetic parameter it will of necessity exceed 

this difference. In a series of adducts with either A or B constant, AG* will vary with the 

apicophilicity of B or A respectively. Typical of the observed lgF n.m.r. spectra is that of 

the adduct (A w Cl; B = Ph). At room temperature this is a sharp singlet. On cooling, the 

signal broadens and below -17' splits into two equal broad signals. These acquire fine 

structure as the temperature is further lowered and at -65“ are both quartets. 

The Table contains data on a number of adducts together with the associated AG*S calculated 

by application of the Gutowsky-Holm equation. The apparent difference in apicophilicity between 

methoxy and phenoxy is reasonable in terms of bonding theory3 but unexpected in View of the 
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Table 

Data on the 1.3,2-Dioxaphospholens (1) 

13&I! 

A B 31pa Mass Spectrum & T'(Y) Au(Hz) AG* (kcal ~1’~) 

PhO PhO +61.3 504, 485, 411 64.9 

PhO MezN +34.8 406, 387, 362, 
313 

65.8 -80 

PhO EtS + 3.2 5;;s 65.1 -98 
, 
5;;') 

159 

178 

8.9 

8.0 

Me0 Ph +15.7 410, 391, 379 65.4 -60 174 9.8 

PhO Ph +1a.a 472, 453, 395 
379 

64.9 -4 151 12.6 

Cl Ph + 4.d 414, 395, 379 65.4 -17 141 12.0 

a In CH2Clz relative to external HaP04. b 56.4 MHz. c P.p.m. upfield relative to 

internal CFCla. d In light petroleum. 

observance of two isomers of the 1:l adduct from dimethyl phenyl phosphite and benzylideneacet- 

ylacetone.4 The relatively high apicophilicity of chlorine is presumably a balance between 

electronegativity and the presence of both 3p donor and low-lying acceptor orbitals.3 

The barrier to pseudorotation in the adduct (A=OPh;B=SEt) may be due either to a difference 

in apicophilicity between phenoxy and ethylthio or to a barrier to rotation round the equatorial 

PS bonds as observed in alkylthio- and arylthio-fluorophosphoranes.5 Slow rotation on the 

n.m.r. timescale introduces an additional energy difference between (1) and (2) since in (1) the 

sulphur p-orbitals will be in the equatorial plane whereas in (2) the p-orbital of the pivot 

sulphur will be in the apical plane. The barrier to pseudorotation in the adduct (A=OPh; 

B=WMez) is probably due to a difference in apicophilicity between phenoxy and dimethylamino, in 

agreement with previous observations,2 and not to slow PR bond rotation, as the methyls are 

equivalent in the 'H n.m.r. spectrum at -100". 
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